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Executive Summary

Cyber threats can cause severe damage to computing infrastructure and systems as well
as data breaches that make sensitive data vulnerable to attackers and adversaries. It is
therefore imperative to discover those threats and stop them before bad actors penetrating
into the information systems.

Cyber threats analysis involves analyzing billions of data either live or recorded from
servers, firewalls, intrusion detection and prevention systems, and network devices. Sig-
nature based analyzing method is effective only if the attack vectors are pre-defined and
already stored in the knowledge database. However, if threat actors change their behavior,
it would be hard to capture. To identify the abnormal behaviors, threat analytics systems
need to not only examine the irregular patterns at certain time but also observe the behavior
changes comparing with the normal states.

The advancement of Artificial Intelligence (AI) has opened up new methods to analyze
and understand data and user behaviors. Machine learning (ML) algorithms are able to
not only analyze data efficiently but also accumulate the knowledge gained from previous
learning. The ML models are getting improved from time to time with new feed-in data.

The accuracy of the AI/ML algorithms could be affected by many factors, from algo-
rithm, data, to prejudicial, or even intentional. As a result, AI/ML applications need to be
non-biased and trustworthy.

The Department of Computer Science faculty and students have conducted study to
apply machine learning in cyber threat analysis. This white paper provides a survey of tools
and process for countering those attacks. In addition, an open-source Python application
using machine learning to identify cyber threat has been developed during the research
process.

Key words

Artificial Intelligence; Machine Learning; Threat; Cybersecurity; Trust; Trustworthiness;
Data Analytics; Ethical and Bias; User Navigation; Log Analysis; Cloud Computing.



1. Introduction

Cyber threat analysis involves billions of data records from servers, firewalls, intrusion
detection and prevention systems, and network devices. Those include log data that have
been stored on log servers and live data that are generated in real time. It has been a
challenge to comb through those vast amount of data to find out threat vectors. Predefined
signatures are effective but they would fail if new threat vectors emerge or adversaries’
behavior changes.

The advancement of Artificial Intelligence has opened up new ways to analyze and un-
derstand data and user behaviors. Machine learning algorithms are able to not only analyze
data efficiently but also build up knowledge gained from previous learning. Algorithms
and models built for general purposes are available for immediate starting a project. The
models become more accurate under supervised training when more data are fed in.

Machine learning can be classified as:

* Unsupervised learning. A clustering model attempts to find groups, similarities,
and relationships within unlabelled data, Figure 1 illustrates a unsupervised learning
model. !

Fig. 1. Unsupervised Learning

* Supervised learning. A classification model to identify how input variables con-
tribute to the categorization of data points. Figure 2 depicts a supervised learning
model. 2

* Semi-supervised learning. A classification model falls between supervised learning
and unsupervised learning by combining a small amount of labeled data with a large
amount of unlabeled data during training.

* Reinforcement learning. Reinforcement learning is characterized by a continuous
loop where an agent interacts with an environment and measures the consequences

1image source: [1]
2image source: [1]



Fig. 2. Supervised Learning

of its actions. Figure 3 shows a reinforcement learning model. 3
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Fig. 3. Reinforcement Learning

* Transfer learning. Transfer learning stores knowledge gained while solving one
problem and applies it to a different but related problem.

Public sector organizations operate external-facing applications with broad multi-task
user interfaces. There are significant investments made in human-centered design, but new
opportunities exist to enhance personalization of the interfaces through machine learning
and Al to reduce burden on the public user in navigation and task performance. The prob-
lem involves leveraging information from user roles, prior behavior, schedules of required
activities, and other characteristics to predict the intended reasons why users are entering
a system at any given time, and where they plan to navigate and work. This information
would be used to facilitate the users in those navigations. Tracking and log data from servers
on AWS or Google Analytics can be used for exploration in the development of a methodol-
ogy. More Machine Learning complex navigation analytics can be explored using behavior
analysis method and visualized through business intelligence dashboards.

3image source: [1]



2. Current Status in AI/ML-based Models and Analytics

Artificial intelligence brings innovation in industry and everyday life. The Deep Blue chess
computer can defeat the greatest human chess player in the world. The autonomous vehi-
cles such as Tesla can drive on the road without human interactions. Machine learning can
reveal a lot of things that human beings can hardly find out. By analyzing music using IBM
Watson Al, people can learn the mode of songs and hence discovered that the majority of
songs from 60s to now are in the mode of ”sadness”.

In cybersecurity, AI/ML is used to deep inspect the packets, analyze the network activ-
ities, and discover abnormal behaviors.

Sagar et al. conducted a survey of cybersecurity using artificial intelligence [2]. It
discusses the need for applying neural networks and machine learning algorithms in cyber-
security.

Mittu et al. proposed a way to use machine learning to detect advanced persistence
threats (APT) [3]. The approach can address APT that can cause damages to information
systems and cloud computing platforms.

Mohana et al. proposed a methodology to use genetic algorithms and neural networks
to better safe guard data [4]. A key produced by a neural network is said to be stronger for
encryption and decryption.

With a grant from the National Science Foundation (NSF), Wang and Kelly developed
a video data analytics tool that can penetrate into videos to “understand” the context of the
video and the language spoken [5].

Kumbar proposed a fuzzy system for pattern recognition and data mining [6]. It is
effective in fighting phishing attacks by identifying malware.

Using Natural Language Processing (NLP), Wang developed an approach that can iden-
tify issues with cybersecurity policies in financial processing process [7] so financial bank-
ing companies can comply with PCI/DSS industry standard.

Harini used intelligent agent to reduce or prevent distributed denial of service (DDoS)
attacks [8]. An expert system is used to identify malicious codes to prevent being installed
in the target systems.

With a grant from National Security Agency (NSA), Wang and his team developed an
intelligent system for cybersecurity curriculum development [9]. The system is able to
develop training and curricula following the National Initiative of Cybersecurity Education
(NICE) framework.

Dilrmaghani et al. provide an overview of the existing threats that violate security and
privacy within AI/ML algorithms [10].

Gupta et al. studied quantum machine learning that uses quantum computation in artifi-
cial intelligence and deep neural networks. They proposed a quantum neuron layer aiming
to speed up the classification process [11].

Mohanty et al. surveyed quantum machine learning algorithms and quantum Al appli-
cations [12].

Edwards and Rawat conducted a survey on quantum adversarial machine learning by



adding a small noise that leads to classifier to predict to a different result [13]. By de-
polarization, noise reduction and adversarial training, the system can reduce the risk of
adversarial attacks.

2.1 Bias in Existing AI/ML Algorithms

People hope the neutrality in AI/ML algorithms. Unfortunately, bias does exist. Wash-
ington Post published an article that “credit scores are supposed to be race-neural. That’s
impossible”. Forbes published a report that ”’self-driving card are more likely to recognize
white pedestrians than black pedestrians, resulting in decreased safety for darker-skinned
individuals. A Nature paper reports that ”a major healthcare company used an algorithm
that deemed black patients less worthy of critical healthcare than others with similar med-
ical conditions. Associate Press published an article that ”financial technology companies
have been shown to discriminate against black and latinx households via higher mortgage
interest rates.
In general, bias can be classified into the following categories:

* Algorithm Bias. Bias as a result of inaccurate algorithms are used.

» Data Bias. Bias due to incorrectly sample the data for training that are not reflect the
whole data set.

Prejudicial Bias. Feeding model with prejudicial knowledge for example “nurses
are female”.

* Measurement Bias. Bias as a result of incorrect measurement.

Intentional Bias. People embed unjust or discriminatory rules in the AI/ML models.

Trustworthy AI/ML is to discover those bias and build robust AI/ML algorithms that
is trustworthy. For example, a Tesla with autopilot could crash onto a fire truck, which is
hardly possible even for the worst human drivers. This shows that the nine “eyes” (radar
system) under artificial intelligence are still inferior than two eyes of human intelligence.
To be trustworthy, Tesla cars need to be trained with reliable data that can “filter” the
“noise” caused by the emergency light flashing, which changes the images of a fire truck.

Effort has been put in countering the Al bias. Obaidat et al. uses random sampling on
images with a convolutional neural network (CNN) [14]. They tested using the Fashion-
MNIST dataset that consists of 70,000 images, 60,000 for training and 10,000 for testing
with an accuracy of 87.8%.

Bernagozzi et al. at IBM conducted a survey that reveals the presence of bias in chatbots
and online language translators using two-tier method to rate bias [15] .

Lohia et al. at IBM proposed a framework that can detect bias to improve fairness [16].
The algorithms detects individual bias and then post-processing for bias mitigations.
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Fig. 4. Two-tier Analyzing Method for Rating Bias in AI/ML Algorithms

2.2 Using Adversarial ML Model to Discover Bias

Adversarial ML model is commonly used to attack ML algorithms in a way that the models
would function abnormally. McAfee once attacked Tesla’s system by adding a strip to a
speed limit sign that fooled the car to drive 50 mph over the speed limit. A stealth”
ware technology with adversarial pattern on glasses and clothes can fool facial recognition
systems. Adversatial attacks can be classified into three categories:

» Evasion. An attack uses steganography and other technologies to obfuscate the tex-
tual content.

* Poisoning. An attack to contaminate the training data.

* Model stealing. An attack to consider the target as a black box and try to extract
data from the model.

2.3 Notation of Bias and Mitigation

Consider a supervised classification problem with features X € 2", categorical protected
attributes D € 2, and categorical labels Y € %#". We are given a set of training samples
{(x1,d1,1), -+ (Xn,dy,yn) } and would like to learn a classifier y: 2" x ¥ — % . For ease
of exposition, we will only consider a scalar binary protected attribute, i.e. 2 = {0,1}. The
value d =1 is set to correspond to the privileged group (e.g. whites in the United States in
criminal justice application) and d = 0 to unprivileged group (e.g. blacks). The value y =1
is set to correspond to a favorable outcome. Based on the context, we may also deal with
probabilistic binary classifiers with continuous output scores s € [0, 1] that are thresholded
to {0,1}.

One definition of individual bias is as follows. Sample i has individual bias if $(x;,d =
0) # $(x;,d = 1).Let b; = I[§(x;,d = 0) # $(x;,d = 1)], where I[-] is an indicator function.



The individual bias score, bs; = ys(x+i,d = 1) — s(x;,d = 0), is a soft version of b;. To
compute an individual bias summary statistic, we take the average of b; across test samples.

One notion of group fairness known as disparate impact is defined as follows [16].
There is disparate impact if the division of the expected values

E[(X,D)|D = 0]
E[p(X,D)|D =1]

is less than 1 — & or greater than (1 —&)~!, where a common value of € is 0.2.

The test procedure usually divided into two steps: 1) determine whether there are any
trials of individual bias, 2) discover the found bias against all samples.

Mitigation can be performed by changing the label outputs of the classifier y; to other
labels y € %

Zhang et al. use federated learning (FL) in privacy-aware distributed machine learning
application [17]. Experiments show it can reduce the discrimination index of all demo-
graphic groups by 13.2% to 69.4% with the COMPAS dataset.

6]

3. AI/ML-based Bias and Threat Analytics Tools

Artificial intelligence uses data to train models and uses an inference engine to draw a
conclusion or predict the outcome. The overall architecture * can be shown as Fig. 5.
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Fig. 5. Al Architecture.

Su et al. utilize open source testing and analysis tools Hping3, Scapy to simulate DDoS
flood and import the data collected from those simulated attacks into Splunk to identify pos-
sible attacks [19]. The Splunk machine learning toolkit extends the capabilities of Splunk.

4image source: [18]



Ngoc et al. proposed an early warning approach to counter APT. It analyzes the APT
target using log analysis techniques [20].

Counterfit 1s an Al security risk assessment package developed at Microsoft. The open-
source tool helps companies conduct Al risk assessment to ensure the AI/ML algorithms
are non-bias, reliable, and trustworthy [21].

4. Development of Cyber Threat with Machine Learning Tool - CTML

Detecting web attacks using machine learning is an area that has drawn attention and re-
quires continuous research and development. This project analyzes 822,226 log records
from a company’s web login page in a 5 hour time span. After cleaning and pre-processing
the data, the CTML algorithm detected records that could potentially be attacks. It then
calculated the likelihood (of attacks) based on the abnormal behaviors.

The main strategy is to use unsupervised learning for better understanding the distri-
bution of the input data. Supervised learning is then applied for further classification and
generating predictions. As a result, the CTML model could learn how to predict/classify on
output from new inputs. Reinforcement learning (RL) learns from experiences over time.
The algorithm can be improved with more data feed into the system.

The application first loads the input data into a Pandas dataframe, then removes features
that are not of interests in detecting attacks. Next, the data are “compressed” from 800,000+
to around 40,000 by combining the records that have the same source and destination ip
addresses in the same unit time period. The higher the compression rate, the more the
duplications in the dataset. This improved the efficiency of machine learning process.
Unsupervised machine learning is applied to the dataset using K-means clustering. The
output three clusters are labeled as not-suspicious, suspicious, and transitional area.

The pre-processed data are then splitted into 0.66/0.33 for training/testing and further
analyzing the likelihood of each response’s abnormal behaviors. Using results (three clus-
ters) from the unsupervised learning as a supervisor, the algorithm continues apply super-
vised machine learning to discover the threats. In addition to areas that are considered
”confident” or ’no confident”, the transition (gray) area is further analyzed using k-mean
clustering to separate into 2 clusters, labeled as “more suspicious” and "less suspicious”.
The ”more suspicious” tags are then added into the suspicious activity dataset. By doing
so it ensures the machine does not miss any responses that get filtered out during analyzing
process but is still suspected having abnormal behaviors. The likelihood of the suspicion is
calculated based on the percentage over the maximum response per second.

An attack for a general log-in page is defined as considerable number of visits, re-
sponses, callbacks in a short period of time. Thus, pre-processing the data by combining
each duplicating responses per second helps determine the number of responses or visits
that stands out.

The application can be improved by feeding into more and rich data so risks associated
with human behaviors can be identified.

The 3-2 two-tier classification technique helps narrowing down the suspicious activi-
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Fig. 7. Classification using Supervised Learning

ties. If the k-means clustering is applied only once with 2 clusters, the uncertain groups of

dataset would possibly be wrong. Therefore, creating a transition (grey) area in the middle

of two certainties helps detecting the potential attacks that could be missed.
The result is saved into result.csv and all detected attacks are saved in the suspicious_activity.csv.
The research was conducted at Morgan State University. A list of references can be

found here [22-27].
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Appendix A: Project on Github

https://github.com/p-neumann/ML_LogAnalysis
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Appendix B: List of Code

import seaborn as sns
import matplotlib.pyplot as

3 import pandas as pd

from pandas import read_csv
from pandas.plotting import
import csv

import numpy as np

import matplotlib.pyplot as
from scipy import linalg

plt

scatter_matrix

plt

from sklearn.decomposition import PCA, FactorAnalysis
from sklearn.covariance import ShrunkCovariance, LedoitWolf
from sklearn.model_selection import cross_val_score

3 from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import train_test_split

import seaborn as sns
import matplotlib.pyplot as
import pandas as pd

from pandas import read_csv
from pandas.plotting import
import csv

import numpy as np

3 import matplotlib.pyplot as

from scipy import linalg

plt

scatter_matrix

plt

from sklearn.decomposition import PCA, FactorAnalysis

from sklearn.covariance import ShrunkCovariance, LedoitWolf
from sklearn.model_selection import cross_val_score

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import train_test_split

len_of_data = len(data)

> len_of_data

r

%

date = []

time = []

account = []
sourcelIP =
destIP = [
interface
srcPort
dstPort =

I

> protocol = []
; byte = []

packets = []

s startTime = []

timeTook = []
status = []
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60

65
66
67
68
69

70

85
86
87
88
89
90
91

92

94
95
96
97
98

99

na = None

while i < len(data):

msg = datal[i].get(’message’,na)

# for messages with no data will get filtered out here

if ACCEPT’ in msg or ’REJECT’ in msg:
timeTokens = datal[i].get(’timestamp’,na).split ()
date.append(timeTokens [0])
time.append (timeTokens [1])
tokens = msg.split ()
account . append (tokens [1])
interface.append (tokens [2])
sourcelIP.append (tokens [3])
destIP.append(tokens [4])
#storing actions

temp = 5

tempStr = 7’

while (tokens [temp+1] != "OK"):
tempStr = tempStr + tokens[temp] + > °
temp += 1

actionTokens = tempStr.split()
srcPort.append (actionTokens [0])
dstPort.append(actionTokens [1])
protocol . append(actionTokens [2])
packets.append(actionTokens [3])
byte.append(actionTokens [4])
startTime.append (int (actionTokens [5]))
timeTook.append (int (actionTokens [6]) - int(actionTokens [5]))
if (tokens [temp] == ’ACCEPT’):
status.append (1)
else:
status.append (0)
i += 1

# print label as well

print (’Date: ’ + date[0])

print (’Time: ’ + time [0])

print (’AWS account: ’ + account[0])

print (’Network interface: ’ + interface[0])

print (’Source IP: °’ + sourceIP[0])

print (’Destination IP: ’ + destIP[0])

print (’Status: > + str(status[0]))

print (’Source port: ’ + srcPort[0])

print (’Destination port: ’ + dstPort[0])

s print (’Protocol: ’ + protocol[0])

print (’Packets of data: ’ + packets[0])

print (’Size of data: ’ + byte[0] + ’ Dbytes?’)
print (’Start time: ’ + str(startTime [0]))
print (’Time used: ’ + str(timeTook[0]) + ’ seconds’)

print (’New size of dataset after filtering: ’ + str(len(date)))
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100
101
102
103
104
105
106
107
108

109

127
128
129
130
131

132

137
138
139
140
141

142

144
145
146
147
148

149

df = pd.DataFrame ({
"date" :date,
"time" :time,
"account":account ,
"interface":interface,
"sourceIP":sourcelP,
"destIP" :destIP,
"srcPort":srcPort,
"dstPort":dstPort,
"protocol":protocol,
"packets":packets,
"byte" :byte,
"startTime" :startTime,
"timeTook":timeTook,
"status":status

b

df . columns

df .pop(’date’)

df .pop(’time’)

df .pop("account")
df .pop("interface")
df .pop(’srcPort’)
df .pop(’dstPort’)

s df . pop(’protocol’)

df . pop (’packets’)
df . pop(’byte’)
df .pop(’timeTook’)

# Reformat numbers

df [’startTime’] = pd.to_numeric(df[’startTime’])

df [’status’] = pd.to_numeric(df[’status’])

df .head ()

df = df.sort_values([’startTime’,’sourcelIP’, ’destIP’,],ascending=[

True, True, Truel)
df = df .reset_index (drop=True)
df .head ()

#preprocess the data

#0(n)

processedDf = pd.DataFrame ({
"sourceIP":[],
"destIP":[],
"numOfRequest":[],
"time":[],
"acceptanceRate": [],

b

for index, line in df.iterrows():
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150 if index == O0:

151 m = 100

152 if line[’status’] == O0:

153 m =0

154 processedDf .loc[0] = [line[’sourceIP’],line[’destIP’],1,1line
[’startTime’] ,m]

155 else:

156 n = len(processedDf) -1

157 if processedDf.loc[n,’sourceIP’]==1ine[’sourceIP’] and

processedDf .loc[n,’destIP’]==1ine[’destIP’] and processedDf.loc[n
,’time’]==1line[’startTime’]:

158 x = processedDf.loc[n,’numOfRequest’]

159 processedDf .loc[n, ’numOfRequest’] = x + 1

160 if line[’status’] == 1:

161 processedDf .loc[n,’acceptanceRate’] = (((x*
processedDf .loc[n, ’acceptanceRate’]*0.01)+1)/(x+1)) * 100

162 else:

163 processedDf .loc[n,’acceptanceRate’] = (((x*

processedDf .loc[n,’acceptanceRate’]*0.01))/(x+1)) * 100
164 else:

165 m = 100

166 if line[’status’] == O0:

167 m =0

168 processedDf .loc[n+1] = [line[’sourceIP’],line[’destIP’

J,1,line[’startTime’] ,m]
19 processedDf .head ()

171 processedDf .to_csv(’processed_data.csv’)

173 df = pd.read_csv(’processed_data.csv’)

174 df . pop (’Unnamed: 07)

175 df . head ()

176

177 from numpy import mnan

178 from sklearn.metrics import classification_report

179 from sklearn.model_selection import train_test_split
.0 from sklearn.cluster import KMeans

181

2 X = df .loc[:, [’numOfRequest’, ’acceptanceRate’]]

153 kmeans = KMeans(n_clusters = 3)
154 kmeans .fit (X)
55 df [?’is_attack’] = kmeans.labels_

56 df [’ is_attack’].value_counts ()
187

s filtered_labelO
9 filtered_labell
90 filtered_label?2
191

192 #Plotting the results

3 plt.scatter(filtered_labelO[’time’] ,filtered_labelO[’numOfRequest’]

, color = ’green’)

df [df [’is_attack’]==0]
df [df [’is_attack’]==1]
df [df [’is_attack’]==2]
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4 plt.scatter(filtered_labell[’time’] ,filtered_labell[’numOfRequest’]

, color = ’yellow’)

s plt.scatter(filtered_label2[’time’] ,filtered_label2[’numOfRequest’]
, color = ’red’)

196

197 plt.show ()

s plt.savefig(’cluster_graph_1.png’, dpi = 300)

199

200 from sklearn.datasets import load_iris

201 from sklearn.linear_model import LogisticRegression

oy = df[’is_attack’].astype(int)

203 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
=0.33)

204 clf = LogisticRegression(random_state=0, verbose=1).fit(X_train,
y_train)

205 y_pred = clf.predict(X_test)

206 print (classification_report(y_test,y_pred))

207

w0s df [’ is_attack_supervised’] = clf.predict_proba(X)[:,1]

29 df . head ()

211 suspicious_activity df .sort_values(by=’is_attack_supervised’,
ascending=False)

212 suspicious_activity
is_attack’]==2]

213 suspicious_activity.head ()

suspicious_activity[suspicious_activityl[’

25 grayArea = df [df[’is_attack’]==1]

27 X = grayArea.loc[:, [’numOfRequest’, ’acceptanceRate’]]

218 kmeans = KMeans(n_clusters = 2) # is attack or not attack into 2
clusters

219 kmeans . fit (X)

»0 grayArea[’possible_sus’] = kmeans.labels_

»1 grayArea[’possible_sus’].value_counts ()

23 filtered_labelO grayArea[grayArea[’possible_sus’]==0]

24 filtered_labell = grayAreal[grayAreal[’possible_sus’]==1]

26 #Plotting the results

27 plt.scatter(filtered_labelO[’time’] ,filtered_labelO[’numOfRequest’]

, color = ’orange’)
»s plt.scatter(filtered_labell[’time’] ,filtered_labell[’numOfRequest’]
, color = ’brown’)

230 plt.show ()
231 plt.savefig(’cluster_graph_2.png’, dpi = 300)

33 grayArea.head ()

235 suspicious_activity.count ()
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)
3
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239

240

241

242

243
244

245

246
247

248

260

261

262
263
264
265

266

grayAreaSus = grayAreal[grayArea[’possible_sus’] == 1]
grayAreaSus .pop(’possible_sus’)

suspicious_activity = pd.concat([suspicious_activity, grayAreaSus],
ignore_index=True)

suspicious_activity[’likelihood’] = suspicious_activityl[’
numOfRequest’]/suspicious_activity [’numOfRequest’].max ()

suspicious_activity = suspicious_activity.sort_values(by=’likelihood
> ,ascending=False)

suspicious_activity.count ()

suspicious_activity[’likelihood’] = suspicious_activity[’likelihood’
1 x 100
suspicious_activity.sort_values (by=’numOfRequest’,ascending=True)

suspicious_activity[’time’] = pd.to_datetime(suspicious_activityl[’
time’] ,unit=’s"’)
df [’time’] = pd.to_datetime(df[’time’],unit=’s’)

plt.scatter (suspicious_activity[’time’], suspicious_activityl[’
likelihood’], marker=’.’, edgecolors=’white’)

plt.xlabel("time")

plt.ylabel("likelihood of attack")

plt.show ()

s plt.savefig(’suspicious_activity.png’, dpi = 300)

number_of_suspicious = 0

for index, line in suspicious_activity.iterrows():
number_of_suspicious = number_of_suspicious + line["numOfRequest
"]

print ("There are total number of " + str(number_of_suspicious) + "
suspicious activities among the overall " + str(len_of_data) + "
number of responses. ")

print ("The number of unique suspicious activities are " + str(len(
suspicious_activity)) + " with the highest duplicate of " + str(

suspicious_activity ["numOfRequest"] .max()) + among them.")

df .to_csv(’result.csv’)
suspicious_activity.to_csv(’suspicious_activity.csv’)

#end
Listing 1. CTML Code
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